Multiobjective Bayesian Optimization Algorithm for Combinatorial Problems: Theory and practice

نویسنده

  • Josef Schwarz
چکیده

This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) for the multiobjective optimization of combinatorial problems. Three probabilistic models used in the Estimation Distribution Algorithms (EDA), such as UMDA, BMDA and BOA which allow to search effectively on the promising areas of the combinatorial search space are discussed. The main attention is focused on the incorporation of Pareto optimality concept into classical structure of the BOA algorithm. We have modified the standard algorithm BOA for one criterion optimization utilizing the known niching techniques to find the Pareto optimal set. The experiments are focused on tree classes of the combinatorial problems: artificial problem with known Pareto set, multiple 0/1 knapsack problem and the bisectioning of hypergraphs as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

Output-sensitive Complexity of Multiobjective Combinatorial Optimization

We study output-sensitive algorithms and complexity for multiobjective combinatorial optimization problems. In this computational complexity framework, an algorithm for a general enumeration problem is regarded efficient if it is output-sensitive, i.e., its running time is bounded by a polynomial in the input and the output size. We provide both practical examples of MOCO problems for which suc...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

THIN WALLED STEEL SECTIONS’ FREE SHAPE OPTIMIZATION USING CHARGED SYSTEM SEARCH ALGORITHM

Graph theory based methods are powerful means for representing structural systems so that their geometry and topology can be understood clearly. The combination of graph theory based methods and some metaheuristics can offer effective solutions for complex engineering optimization problems. This paper presents a Charged System Search (CSS) algorithm for the free shape optimizations of thin-wall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002